Skip to main content

IRON UPTAKE BY MICROORGANISMS

IRON UPTAKE BY MICROORGANISMS


  • Almost all microorganisms require iron for use in Cytochromes and many enzymes. Iron uptake is made difficult by the extreme insolubility of ferric iron (Fe3+) and its derivatives, which leaves little free iron available for transport.
  • Many bacteria and fungi have overcome this difficulty by secreting Siderophores.
  • Siderophores are low molecular weight organic molecules that are able to complex with ferric iron and supply it to the cell. These iron-transport molecules are normally either Hydroxamates or Phenolates - catecholates.
  • Ferrichrome is a hydroxamate produced by many fungi; Enterobactin is the Catecholate formed by Escherichia coli. It appears that three siderophore groups complex with iron to form a six-coordinate, octahedral complex.
  • Microorganisms secrete siderophores when iron is scarce in the medium. Once the iron-siderophore complex has reached the cell surface, it binds to a siderophore-receptor protein. Then the iron is either released to enter the cell directly or the whole iron siderophore complex is transported inside by an ABC transporter. In E. coli the siderophore receptor is in the outer membrane of the cell envelope; when the iron reaches the periplasmic space, it moves through the plasma membrane with the aid of the transporter.
  • After the iron has entered the cell, it is reduced to the ferrous form (Fe2+).
  • Iron is so crucial to microorganisms that they may use more than one route of iron uptake to ensure an adequate supply.

Comments

Popular posts from this blog

Four Weeks International Online Certificate Course on “BIOANALYTICAL TECHNIQUES (Part II) – Electrophoresis, Spectroscopy and Microbiology Lab Instruments (Phase - I)”

Four Weeks International Online Certificate Course on “BIOANALYTICAL TECHNIQUES (Part II) – Electrophoresis, Spectroscopy and Microbiology Lab Instruments (Phase - I)” ONLINE COURSE CONTENTS CHAPTER NUMBER TOPICS WEEK – 1 1 An Introduction to Electrophoresis 2 Forms and Types of Electrophoresis 3 Electrophoresis – Applications, Advantages and Limitations 4 Gel Electrophoresis 5 Agarose Gel Electrophoresis 6 Pulsed-field Gel Electrophoresis (PFGE) 7 SDS – PAGE 8 2-Dimensional (2D) Electrophoresis 9 Capillary Electrophoresis (CE) 10 Immunoelectrophoresis 11 Affinity Electrophoresis 12 Paper Electrophoresis 13 Cellulose Acetate Electrophoresis 14 ...

Four Weeks International Online Certificate Course on “BIOANALYTICAL TECHNIQUES (Part I) – Microscopy, Chromatography and Centrifugation (Phase - II)”

ONLINE COURSE CONTENTS CHAPTER NUMBER TOPICS WEEK – 1 1 History of Microscopy 2 Parts of Microscope 3 Difference between Simple and Compound Microscope 4 Difference between Light and Electron Microscope 5 Bright Field Microscope 6 Dark Field Microscope 7 Polarizing Microscope 8 Fluorescent Microscope 9 Confocal Microscope 10 Phase Contrast Microscope 11 Differential Interference Contrast (DIC) Microscope 12 Electron Microscope 13 Difference between SEM and TEM 14 Scanned Probe Microscopy – Scanning Tunnelling Microscopy 15 Scanned Probe Microscopy – Atomic Force Microscopy WEEK – 2 16 A...

International Online Short Term Certificate Course on “CHROMATOGRAPHY – AN OVERVIEW” (Phase - I) (for Faculties, Research Scholars and Students)

DAY CHAPTER NUMBER TOPICS Day – 1 04.11.2024 1 An Introduction to Chromatography 2 History of Chromatography 3 Theories of Chromatography 4 Chromatography – Applications, Advantages and Limitations Day – 2 05.11.2024 5 Thin Layer Chromatography (TLC) 6 High Performance Thin Layer Chromatography (HPTLC) 7 Difference Between TLC and HPTLC Day – 3 06.11.2024 8 Paper Chromatography 9 Difference Between Thin Layer Chromatography (TLC) and Paper Chromatography Day – 4 07.11.2024 10 Column Chromatography 11 Flash Column Chromatography Day – 5 08.11.2024 12 High Performance Liquid Chromatography (HPLC) 13 Dif...